Anti-5-Methylcytosine antibody, mouse IgM (clone 5MC-CD)

51-003 100 ug

DNA methylation is a type of chemical modification of DNA that can be inherited and subsequently removed without changing the original DNA sequence. Therefore it is part of the epigenetic code and is also the most well characterized epigenetic mechanism. DNA methylation results in addition of a methyl group to DNA — for example, to the number 5 carbon of the cytosine pyrimidine ring — which involves reduction in gene expression. In adult somatic tissues, DNA methylation typically occurs in a CpG dinucleotide context; non-CpG methylation is prevalent in embryonic stem cells. This hybridoma has been constructed by Prof. H. Sano.

Applications
1) Immunocytochemistry (Figure below and Ref.1 & 2) (~50-100 fold dilution)
2) Immunoblotting detection of DNA with 5'-methylcytosine on nitrocellulose (Ref. 3 & 4) (~1000 fold dilution)

Immunogen: 5'-Methylcytosine conjugated to bovine serum albumin (Ref 3)
Reactivity: DNA with 5'-Methylcytosine (methylated DNA), any species
Isotype: IgM
Form: Purified mouse IgM 1 mg/ml in PBS with 50% glycerol, filter-sterilized
Storage: shipped at 4°C or -20°C, and upon arrival, aliquot and store at -20°C.

References: This product has been used in references 1-3 (& many more publications).

Fig.1 Methylation of chloroplast DNA visualized by immunocytochemistry. Samples are Chlamidomonas me-1 cells. Left: DAPI-stained cells
Middle: Cells stained with anti-5MeC antibody and FITC-conjugated 2nd antibody
Right: Merged image
Chloroplast DNA is exclusively methylated in gamete cells.

to be continued...
Fig. 2 Detection of DNA methylation in mouse embryonic stem cells by immunofluorescence staining with the anti-5MeC antibody

Intense 5-methylcytosine staining at pericentromeric regions was seen in the mitotic chromosome and interphase nuclei of ESCs (For details, see Reference 1).